Definite Integration

IMPORTANT

Definite Integration: Overview

The topic introduces the concept of definite integrals and states that they have unique values. It is introduced as the limit of a sum. If it has an anti-derivative in the interval, its value is the difference between the values at the endpoints.

Important Questions on Definite Integration

HARD
IMPORTANT

The value of abfxdx=balimn1n[fa+fa+h+...+fa+n1h], where h=banf(x)=x2+x+2; a=0, b=2 as limits of sum would be

HARD
IMPORTANT

Let f be a non-negative function defined on the interval [ 0,1 ]. If  0x1(f'(t))2dt=0xf(t)dt,0x1,  and   f(0)=0,  then:

EASY
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

If fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are respectively 

HARD
IMPORTANT

The value of limn1n+1+1n+2+...+16n is

HARD
IMPORTANT

limn1n+1+1n+2+...+16n  is equal to

HARD
IMPORTANT

If L=limn15+25+35+....+n5n6+limn14+24+34+....+n4n5-limn13+23+....+n3n4, then the value of L is

MEDIUM
IMPORTANT

Evaluate:38x1+x2dx=?

MEDIUM
IMPORTANT

Evaluate:38x1+x2dx=?

MEDIUM
IMPORTANT

If0a4x3dx=16, then find a.

MEDIUM
IMPORTANT

Evaluate 23xx2-1dx.

MEDIUM
IMPORTANT

Evaluate 491xdx

EASY
IMPORTANT

Find the value of 121+sin2xdx+12cos2x-1dx.

EASY
IMPORTANT

The integral 0π2sec2xdx-0π2tan2xdx is of the form πa, then a=

EASY
IMPORTANT

01sin-1xdx+01cos-1xdx=?
Express the answer how many times of π

MEDIUM
IMPORTANT

Evaluate 0π2cos2x dx.

HARD
IMPORTANT

Evaluate the following

0π/215+4sinxdx

HARD
IMPORTANT

Evaluate the following

0π/2dx4cosx+9sinx

HARD
IMPORTANT

Evaluate the following integral as a limit of sum :

13x3dx

HARD
IMPORTANT

Evaluate the following integral as a limit of sum :

03(ex+6x2)dx